This print-out should have 72 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

$001 \quad 10.0$ points

For the reaction

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

find the value for the work done at 300 K .

1. 2.5 kJ
2. -7.5 kJ
3. 7.5 kJ
4. -2.5 kJ
00210.0 points

The enthalpy of fusion of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is $3.16 \mathrm{~kJ} / \mathrm{mol}$. How much heat would be absorbed or released upon freezing 25.6 grams of methanol?

1. 2.52 kJ absorbed
2. 0.253 kJ absorbed
3. 2.52 kJ released
4. 3.95 kJ released
5. 3.95 kJ absorbed
6. 0.253 kJ released

00310.0 points

A 0.2 gram sample of a candy bar is combusted in a bomb calorimeter, increasing the temperature of the 2000 g of water from $25.00^{\circ} \mathrm{C}$ to $25.47^{\circ} \mathrm{C}$. What is ΔU in kJ / g ? Ignore any heat loss or gain by the calorimeter itself.

1. $19.6 \mathrm{~kJ} / \mathrm{g}$
2. $-3.9 \mathrm{~kJ} / \mathrm{g}$
3. $-0.08 \mathrm{~kJ} / \mathrm{g}$
4. $-19.6 \mathrm{~kJ} / \mathrm{g}$
5. $3.9 \mathrm{~kJ} / \mathrm{g}$
6. $0.08 \mathrm{~kJ} / \mathrm{g}$

$004 \quad 10.0$ points

For the combustion reaction of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$

$$
\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

assume all reactants and products are gases, and calculate the $\Delta H_{\mathrm{rxn}}^{0}$ using bond energies.

1. $0 \mathrm{~kJ} / \mathrm{mol}$
2. $251 \mathrm{~kJ} / \mathrm{mol}$
3. $680 \mathrm{~kJ} / \mathrm{mol}$
4. $-1300 \mathrm{~kJ} / \mathrm{mol}$
5. $-251 \mathrm{~kJ} / \mathrm{mol}$
6. $1300 \mathrm{~kJ} / \mathrm{mol}$
7. $-680 \mathrm{~kJ} / \mathrm{mol}$

$005 \quad 10.0$ points

Methyl tert-butyl ether or MTBE is an octane booster for gasoline. The combustion of 0.9211 grams of MTBE $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}(\ell), 88.15\right.$ $\mathrm{g} / \mathrm{mol}$) is carried out in a bomb calorimeter. The calorimeter's hardware has a heat capacity of $1.540 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$ and is filled with exactly 2.022 L of water. The initial temperature was $26.336^{\circ} \mathrm{C}$. After the combustion, the temperature was $29.849^{\circ} \mathrm{C}$. Analyze this calorimeter data and determine the molar internal energy of combustion (ΔU) for this octane booster.

1. $-3362 \mathrm{~kJ} / \mathrm{mol}$
2. $-3120 \mathrm{~kJ} / \mathrm{mol}$
3. $-3560 \mathrm{~kJ} / \mathrm{mol}$
4. $-1957 \mathrm{~kJ} / \mathrm{mol}$
5. $-2286 \mathrm{~kJ} / \mathrm{mol}$
6. $-2748 \mathrm{~kJ} / \mathrm{mol}$
7. $-4293 \mathrm{~kJ} / \mathrm{mol}$

$006 \quad 10.0$ points

Calculate the standard reaction enthalpy for the oxidation of nitric oxide to nitrogen dioxide

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

given

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}(\mathrm{~g}) \\
& \Delta H^{\circ}=+180.5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
& 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \\
& \Delta H^{\circ}=-66.4 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

1. $-294.6 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
2. $+114.1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
3. $-114.1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
4. $+246.9 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
5. $-246.9 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

$007 \quad 10.0$ points

You have a 12 oz . can $(355 \mathrm{~mL})$ of beer. You test the temperature and see that it reads $0^{\circ} \mathrm{C}$. Now this isn't just any beer; this is Guinness and you've heard that Guinness is best at room temperature $\left(20^{\circ} \mathrm{C}\right)$. If the specific heat of Guinness is $4.186 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, how much heat should you add in order to raise the temperature? The density of Guinness is $1.2 \mathrm{~g} / \mathrm{mL}$.

1. 33.6 kJ
2. 83 J
3. 33.6 J
4. 35.6 kJ

$008 \quad 10.0$ points

A student runs a reaction in a closed system. In the course of the reaction, 64.7 kJ of heat is released to the surroundings and 14.3 kJ of work is done on the system. What is the change in internal energy (ΔU) of the reaction?

1. -79.0 kJ
2. 50.4 kJ
3. 79.0 kJ
4. -50.4 kJ
5. 90.4 kJ

$009 \quad 10.0$ points

Consider the plot below for three different samples of pure water.

Based on the plot, which answer choice below is a correct statement regarding the three samples of pure water?

1. All three samples have the same heat capacity.
2. Sample Z has the greatest heat capacity.
3. Sample X has the smallest mass.
4. All three samples have different specific heat capacities.
5. Sample Y would require the least heat to raise its temperature by 1 K .

$010 \quad 10.0$ points

What is the total heat flow when 12 grams of ice at $-40^{\circ} \mathrm{C}$ are heated to become water at $25^{\circ} \mathrm{C}$?

1. 0.97 kJ
2. 2.26 kJ
3. 29.39 kJ
4. 4.01 kJ
5. 27.12 kJ
6. 6.27 kJ

$011 \quad 10.0$ points

A CD player and its battery together do 500 kJ of work, and the battery also releases 250 kJ of energy as heat and the CD player releases 50 kJ as heat due to friction from spinning. What is the change in internal energy of the system, with the system regarded as the battery and CD player together?

1. +200 kJ
2. -700 kJ
3. -750 kJ
4. -200 kJ
5. -800 kJ

01210.0 points

3 g of a hydrocarbon fuel is burned in a bomb calorimeter that contains 200 grams of water initially at $25.00^{\circ} \mathrm{C}$. After the combustion reaction, the temperature is $27.00^{\circ} \mathrm{C}$. How much heat is evolved per gram of fuel burned? The heat capacity of the calorimeter (hardware only) is $150 \mathrm{~J} /{ }^{\circ} \mathrm{C}$.

1. $21220 \mathrm{~J} / \mathrm{g}$
2. $1673 \mathrm{~J} / \mathrm{g}$
3. $1973 \mathrm{~J} / \mathrm{g}$
4. $557 \mathrm{~J} / \mathrm{g}$
5. $7505 \mathrm{~J} / \mathrm{g}$
6. $7073 \mathrm{~J} / \mathrm{g}$
7. $300 \mathrm{~J} / \mathrm{g}$
8. $657 \mathrm{~J} / \mathrm{g}$

$013 \quad 10.0$ points

The specific heat of water is $1.00 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, the heat of vaporization of water is $540 \mathrm{cal} / \mathrm{g}$, and the heat of fusion of water is $80 \mathrm{cal} / \mathrm{g}$. How much heat would be required to convert 10 grams of ice at $0^{\circ} \mathrm{C}$ to 10 grams of water at $75^{\circ} \mathrm{C}$?

1. 15.5 cal
2. 6150 cal
3. 155 cal
4. 1.55 kcal
5. 61.5 kcal

$014 \quad 10.0$ points

1 g of cake is combusted in a bomb calorimeter. The heat capacity of the calorimeter hardware is 12 calories $\cdot \mathrm{K}^{-1}$. The calorimeter contains 4 L of water; the specific heat capacity of water is 1 calorie $\cdot \mathrm{g}^{-1} \cdot \mathrm{~K}^{-1}$ and the density of water is $1 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$. You detonate the cake and the temperature of the water increases by 1.2 K . Calculate the calories in the one-gram sample of cake, ΔU.

1. 4814.4 calories
2. 1150.7 calories
3. 20083.2 calories
4. $95 \mathrm{~kJ} / \mathrm{mol}$
5. 20143.4 calories
6. 4800.0 calories
7. 1147.2 calories

$015 \quad 10.0$ points

Reaction of tertiary butyl alcohol with hydrobromic acid produces tertiary butyl bromide by the following reaction. Use bond energies (provided in preamble) to estimate the change in enthalpy, $\Delta \mathrm{H}$, for this reaction.

1. $+105 \mathrm{~kJ} / \mathrm{mol}$
2. $+186 \mathrm{~kJ} / \mathrm{mol}$
3. $+24 \mathrm{~kJ} / \mathrm{mol}$
4. $-105 \mathrm{~kJ} / \mathrm{mol}$
5. $-24 \mathrm{~kJ} / \mathrm{mol}$
6. $-186 \mathrm{~kJ} / \mathrm{mol}$

$016 \quad 10.0$ points

Estimate the heat released when 1-butene $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ reacts with bromine to give $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{Br}$. Bond enthalpies are
$\mathrm{C}-\mathrm{H}: 412 \mathrm{~kJ} / \mathrm{mol} ; \quad \mathrm{C}-\mathrm{C}: 348 \mathrm{~kJ} / \mathrm{mol}$;
$\mathrm{C}=\mathrm{C}: 612 \mathrm{~kJ} / \mathrm{mol} ; \quad \mathrm{C} — \mathrm{Br}: 276 \mathrm{~kJ} / \mathrm{mol}$; $\mathrm{Br}-\mathrm{Br}: 193 \mathrm{~kJ} / \mathrm{mol}$.

1. $317 \mathrm{~kJ} / \mathrm{mol}$
2. $288 \mathrm{~kJ} / \mathrm{mol}$
3. $181 \mathrm{~kJ} / \mathrm{mol}$
4. $507 \mathrm{~kJ} / \mathrm{mol}$

$017 \quad 10.0$ points

Which of the following is/are a reason that water is a desirable heat sink for use in calorimeters?
I) Water's heat specific capacity is very precisely known.
II) Water is readily available.
III) Water has an unusually large specific heat capacity.

1. I only
2. II and III
3. I and II
4. I, II and III
5. II only
6. I and III
7. III only

$018 \quad 10.0$ points

Consider a thermodynamic system that is simultaneously releasing heat and doing work. The internal energy of this system will:

1. Decrease

2. Increase, decrease, or stay the same depending on the magnitudes of heat and work
3. Stay exactly the same.

4. Increase

$019 \quad 10.0$ points

Which of the following statements is/are true?
I) For a given process, ΔH must be zero when external pressure is zero.
II) For a given process, ΔU and ΔH must have different values.
III) For a given process, $\Delta U_{\text {sys }}$ and $\Delta U_{\text {surr }}$ must have the same magnitude.

1. I, II

2. I, II, III
3. I only
4. III only
5. II, III
6. II only
7. I, III

$020 \quad 10.0$ points

If you drop a piece of potassium metal into water you get the following exothermic reaction:
$2 \mathrm{~K}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow 2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
What are the values of q and w for this reaction, at constant temperature and pressure?

1. Both are positive.
2. q is negative and w is positive.
3. q is positive and w is negative.
4. Both are negative.

$021 \quad 10.0$ points

The formation of chemical bonds from separated atoms

1. is never spontaneous.
2. increases entropy.
3. may be either endothermic or exothermic.
4. is always exothermic.
5. is always endothermic.

$022 \quad 10.0$ points

Which of
$\mathrm{O}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\ell), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\ell), \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{H}_{2} \mathrm{O}(\ell)$
have a standard enthalpy of formation equal to zero?

1. $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\ell), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\ell), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, $\mathrm{H}_{2} \mathrm{O}(\ell)$
2. $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3. $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\ell), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\ell)$
4. $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g})$
5. All of them, but only at absolute zero

$023 \quad 10.0$ points

When 1 mol of methane is burned at constant pressure, $-890 \mathrm{~kJ} / \mathrm{mol}$ of energy is released as heat. If a 3.64 g sample of methane is burned at constant pressure, what will be the value of ΔH ? (Hint: Convert the grams of methane to moles. Also make sure your answer has the correct sign for an exothermic process.)

1. -61.1875
2. -202.475
3. -176.888
4. -268.669
5. -257.544
6. -233.625
7. -132.387
8. -140.731
9. -264.219
10. -115.144

Answer in units of kJ .

$024 \quad 10.0$ points

Calculate the quantity of energy required to change 3.00 mol of liquid water at $100^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$. The molar heat of vaporization of water is $40.6 \mathrm{~kJ} / \mathrm{mol}$.

1. 300 kJ
2. 122 kJ
3. None of these
4. 40.6 kJ
5. 13.5 kJ

$025 \quad 10.0$ points

Calculate the heat of formation for 2.6 mol of sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ from its elements, sulfur and oxygen. Use the balanced chemical equation and the following information.

$$
\begin{aligned}
& \mathrm{S}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{3}(\mathrm{~g}) \\
& \begin{aligned}
& \Delta H_{\mathrm{c}}^{0}=-395.2 \mathrm{~kJ} / \mathrm{mol} \\
& 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \\
& 2 \mathrm{SO}_{3}(\mathrm{~g})
\end{aligned} \\
& \Delta H^{0}=-198.2 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

1. -414.54
2. -562.59
3. -384.93
4. -769.86
5. -592.2
6. -503.37
7. -651.42
8. -710.64
9. -621.81
10. -532.98

Answer in units of kJ .

$026 \quad 10.0$ points

? heat capacity is the amount of heat required to raise the temperature of one ? of an object by $1^{\circ} \mathrm{C}$. It is an ? property.

1. Specific; gram; extensive
2. Molar; gram; intensive
3. Specific; mole; extensive
4. Molar; gram; extensive
5. Specific; gram; intensive
6. Molar; mole; extensive

027 (part 1 of 3) 10.0 points
Consider the following chemical and physical changes:
A. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
C. $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{HF}(\mathrm{g})$ $\Delta H=-271.1 \mathrm{~kJ} / \mathrm{mol}$
D. $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
E. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
$\Delta H=180.50 \mathrm{~kJ} / \mathrm{mol}$
Which change(s) are endothermic?

1. C and D only
2. B and E only
3. C only
4. A, D, and E only
5. A, C, and D only
6. A and E only

028 (part 2 of 3) 10.0 points

For which change(s) would $\Delta H=\Delta U$?

1. B and E only
2. C and D only
3. A and B only
4. A and D only
5. B, C, and E only

029 (part 3 of 3) 10.0 points
For which change(s) would $\Delta H_{\mathrm{rxn}}=\Delta H_{\mathrm{f}}$ of the product?

1. A, B, and C only
2. C only
3. A and C only
4. A, B, C, and E only
5. C and E only

The standard enthalpy of formation of $\mathrm{Br}_{2}(\ell)$ is

1. negative.
2. zero.
3. positive.

$031 \quad 10.0$ points

Consider the combustion reaction below.
$2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$
If this reaction took place in a closed, rigid container, work would be (positive/negative/zero) and heat would be (positive/negative/zero).

1. positive, zero
2. positive, negative
3. zero, positive
4. negative, positive
5. negative, zero
6. zero, negative

$032 \quad 10.0$ points

Which of the reactions below is a formation reaction?

1. $2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
2. $\mathrm{B}_{2}(\mathrm{~s})+2 \mathrm{I}_{2}(\ell)+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BI}_{2} \mathrm{Cl}(\mathrm{g})$
3. $\mathrm{C}_{\text {diamond }}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
4. $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g})$
$033 \quad 10.0$ points
Energy in the amount of 455 J is added to a 67.0 g sample of water at a temperature of $7.00^{\circ} \mathrm{C}$. What will be the final temperature of the water?
5. 26.7039
6. 8.62465
7. 15.1616
8. 27.1092
9. 17.8501
10. 30.404
11. 29.7016
12. 13.5327
13. 15.6545
14. 3.29054

Answer in units of ${ }^{\circ} \mathrm{C}$.

$034 \quad 10.0$ points

A system did 150 kJ of work and its internal energy increased by 60 kJ . How much energy did the system gain or lose as heat?

1. The system gained 60 kJ of energy as heat.
2. The system gained 90 kJ of energy as heat.
3. The system lost 210 kJ of energy as heat.
4. The system lost 90 kJ of energy as heat.
5. The system gained 210 kJ of energy as heat.

$035 \quad 10.0$ points

An important reaction that takes place in the atmosphere is

$$
\mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

which is brought about by sunlight. Calculate the standard enthalpy of the reaction from the following information

$$
\begin{array}{lr}
\text { reaction } & \Delta H^{\circ}(\mathrm{kJ}) \\
\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{~g}) & +498.4 \\
\mathrm{NO}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & -200.0 \\
\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g}) & +142.7
\end{array}
$$

1. 306.5 kJ
2. 820.5 kJ

3． 320.2 kJ

4． 555.7 kJ
5． 963.8 kJ

6． 106.5 kJ
7． 449.2 kJ

$036 \quad 10.0$ points

What is the value of work when an external pressure of 2 atm compresses a piston from an initial volume of 11.2 liters to a final volume of 2 liters．

1．-18.4 kJ

2． 18.4 kJ
3． 1.86 kJ

4．-1.86 kJ

$037 \quad 10.0$ points

A bomb calorimeter with a heat capacity of $30 \mathrm{~J} / \mathrm{C}$ contains 1000 g of water with an initial temperature of $25^{\circ} \mathrm{C}$ ．A 0.5 g sample of a candy bar is placed in a bomb calorimeter and ignited，resulting in a new water temperature of $30^{\circ} \mathrm{C}$ ．What is ΔE for this reaction？

1．$-42 \mathrm{~kJ} / \mathrm{g}$
2． $0 \mathrm{~kJ} / \mathrm{g}$
3．$+21 \mathrm{~kJ} / \mathrm{g}$
4．$-300 \mathrm{~kJ} / \mathrm{g}$
5．$+300 \mathrm{~kJ} / \mathrm{g}$
6．$-21 \mathrm{~kJ} / \mathrm{g}$
7．$+42 \mathrm{~kJ} / \mathrm{g}$
$038 \quad 10.0$ points
For the combustion reaction of ethylene
$\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$

$$
\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

assume all reactants and products are gases， and calculate the $\Delta H_{\mathrm{rxn}}^{0}$ using bond energies from the list below．
$\mathrm{C} — \mathrm{H}: 413 \mathrm{~kJ} / \mathrm{mol} ; \quad \mathrm{H}-\mathrm{O}: 463 \mathrm{~kJ} / \mathrm{mol}$ ；
O — $\mathrm{O}: 146 \mathrm{~kJ} / \mathrm{mol} ; \quad \mathrm{O}$ 二 $\mathrm{O}: 498 \mathrm{~kJ} / \mathrm{mol}$ ．
C — $\mathrm{C}: 346 \mathrm{~kJ} / \mathrm{mol} ; \quad \mathrm{C}$ 三 $\mathrm{C}: 602 \mathrm{~kJ} / \mathrm{mol}$ ．
C — $\mathrm{O}: 358 \mathrm{~kJ} / \mathrm{mol} ; \quad \mathrm{C}$ 三 $\mathrm{O}: 799 \mathrm{~kJ} / \mathrm{mol}$ ．
$1.0 \mathrm{~kJ} / \mathrm{mol}$
2．$-251 \mathrm{~kJ} / \mathrm{mol}$
3．$-680 \mathrm{~kJ} / \mathrm{mol}$
4．$-1300 \mathrm{~kJ} / \mathrm{mol}$
5． $1300 \mathrm{~kJ} / \mathrm{mol}$
6． $680 \mathrm{~kJ} / \mathrm{mol}$
$7.251 \mathrm{~kJ} / \mathrm{mol}$

$039 \quad 10.0$ points

2.26 g of liquid water at $23.5{ }^{\circ} \mathrm{C}$ was com－ pletely converted to ice at $0{ }^{\circ} \mathrm{C}$ ．How much heat was（absorbed／released）by the system during this process？

1． 1478 J；absorbed
2． 755 J ；absorbed
3． 1478 J ；released
4． 977 J ；absorbed
5． 977 J；released
6． 755 J ；released

$040 \quad 10.0$ points

Which of the following reactions is an en－ thalpy of formation reaction？

1．$\frac{1}{2} \mathrm{~N}_{2}(\ell)+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
2. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{g}) \underset{\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{NaCl}(\mathrm{aq})}{ }$
3. $2 \mathrm{Fe}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
4. $\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}_{\text {graphite }}+2 \mathrm{H}_{2}(\mathrm{~g})$
$041 \quad 10.0$ points
Consider a system where 2.50 L of ideal gas expands to 6.25 L against a constant external pressure of 330 torr. Calculate the work (w) for this system.

1. -1238 J
2. +1238 J
3. -1.63 J
4. +165 J
5. +1.63 J
6. -165 J

$042 \quad 10.0$ points

Calculate the standard reaction enthalpy for the reaction
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell)$
$043 \quad 10.0$ points
Calculate the standard reaction enthalpy ($\Delta H_{\mathrm{rxn}}^{\circ}$) for the final stage in the production of nitric acid, when nitrogen dioxide dissolves in and reacts with water:

$$
3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g})
$$

$$
\text { 1. }-370 \mathrm{~kJ}
$$

2. +70 kJ
3. -104 kJ
4. +136 kJ
5. -304 kJ
6. -137 kJ

$044 \quad 10.0$ points

The molar heat capacity of $\mathrm{C}_{6} \mathrm{H}_{6}(\ell)$ is 136 $\mathrm{J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$ and of $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$ is $81.6 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$. The molar heat of fusion for benzene is 9.92 $\mathrm{kJ} / \mathrm{mol}$ and its molar heat of vaporization is $30.8 \mathrm{~kJ} / \mathrm{mol}$. The melting point of benzene is $5.5^{\circ} \mathrm{C}$, its boiling point is $80.1^{\circ} \mathrm{C}$, and its molecular weight $78.0 \mathrm{~g} / \mathrm{mol}$. How much heat would be required to convert 234 g of solid
benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~s})\right)$ at $5.5^{\circ} \mathrm{C}$ into benzene vagiven $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell) \rightarrow 2 \mathrm{C}_{\text {graphite }}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ por $\left(\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})\right)$ at $100.0^{\circ} \mathrm{C}$?

$$
\begin{array}{cc}
\begin{array}{c}
\Delta H^{\circ}=228 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{\text {graphite }}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})
\end{array} & \text { 1. } 97.2715 \mathrm{~kJ} \\
\begin{aligned}
\Delta H^{\circ}=394 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{aligned} & \text { 2. } 157.468 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell) \\
\Delta H^{\circ}=-286 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} & \text { 3. } 4931.72 \mathrm{~kJ} \\
\text { 1. } 730 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} & \\
\text { 2. }-846 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} & \text { 4. } 60.1968 \mathrm{~kJ} \\
& \text { 5. } 152.597 \mathrm{~kJ}
\end{array}
$$

3. $-1,418 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
4. $336 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
5. $-452 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

$045 \quad 10.0$ points

Calculate the standard reaction enthalpy for the reaction

$$
\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

given $+142.7 \mathrm{~kJ} / \mathrm{mol}$ for the standard enthalpy of formation of ozone and
$\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g}) \quad \Delta H^{\circ}=+498.4 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

$$
\Delta H^{\circ}=-200 \mathrm{~kJ} / \mathrm{mol}
$$

Remember the definition of the standard enthalpy of formation of a substance.

1. $+306 \mathrm{~kJ} / \mathrm{mol}$
2. $+355 \mathrm{~kJ} / \mathrm{mol}$
3. $+192 \mathrm{~kJ} / \mathrm{mol}$
4. $+592 \mathrm{~kJ} / \mathrm{mol}$
5. $+555 \mathrm{~kJ} / \mathrm{mol}$
$046 \quad 10.0$ points
A coffee cup calorimeter measures the heat at constant ? whereas a bomb calorimeter measures the heat at constant ?
6. pressure $\left(q_{\mathrm{p}}=\Delta H\right) ;$ volume $\left(q_{\mathrm{v}}=\Delta U\right)$
7. pressure $\left(q_{\mathrm{p}}=\Delta U\right) ;$ volume $\left(q_{\mathrm{v}}=\Delta H\right)$
8. volume $\left(q_{\mathrm{v}}=\Delta H\right) ;$ pressure $\left(q_{\mathrm{p}}=\Delta U\right)$
9. volume $\left(q_{\mathrm{v}}=\Delta U\right) ;$ pressure $\left(q_{\mathrm{p}}=\Delta H\right)$

$047 \quad 10.0$ points

You have two liquids of identical mass, and both with initial temperatures of $15^{\circ} \mathrm{C}$. One is ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, with a specific heat of $2.46 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and the other is benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, with a specific heat of $1.74 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. If both liquids absorb the same amount of heat, which one will have the highest final temperature? Assume that neither liquid reaches its boiling point.

1. Cannot tell without more information given.
2. ethanol
3. Both liquids will have the same final temperature.

4. benzene

$048 \quad 10.0$ points

1-bromo-isobutane will undergo and elimination reaction to yield isobutene and hydrogen bromide as shown in the reaction below. Use bond energies (provided in preamble) to estimate the change in enthalpy, ΔH, for this gas phase reaction.

1. $-270 \mathrm{~kJ} / \mathrm{mol}$
2. $+270 \mathrm{~kJ} / \mathrm{mol}$
3. $-76 \mathrm{~kJ} / \mathrm{mol}$
4. $+337 \mathrm{~kJ} / \mathrm{mol}$
5. $+76 \mathrm{~kJ} / \mathrm{mol}$
6. $-337 \mathrm{~kJ} / \mathrm{mol}$

$049 \quad 10.0$ points

Which is true, considering the first law of thermodynamics?

1. $\Delta U=q-w$, where heat and work can both be positive for the same process
2. $\Delta U=q+w$, where heat and work can never both be positive for the same process
3. $\Delta U=q-w$, where heat and work can never both be positive for the same process
4. $\Delta U=q+w$, where heat and work can both be positive for the same process.

$050 \quad 10.0$ points

For which of the following chemical equations would $\Delta H_{\mathrm{rxn}}^{\circ}=\Delta H_{\mathrm{f}}^{\circ}$?

1. $\mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\ell)$
2. $\mathrm{C}\left(\mathrm{s}\right.$, graphite) $+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow$ $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3. $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
4. $\mathrm{N}_{2}(\ell)+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NF}_{3}(\ell)$

$051 \quad 10.0$ points

The combustion of methane gas $\left(\mathrm{CH}_{4}\right)$ forms $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$. Calculate the heat produced by burning 1.98 mol of the methane gas. Use these $\Delta H_{\mathrm{f}}^{0}$ data to help:
$\mathrm{CH}_{4}(\mathrm{~g})=-74.9 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CO}_{2}(\mathrm{~g})=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}(\ell)=-285.8 \mathrm{~kJ} / \mathrm{mol}$.

1. 1566.75
2. 1513.34
3. 1290.79
4. 1459.93
5. 1726.99
6. 1175.06
7. 1424.32
8. 1201.77
9. 1121.65
10. 1762.6

Answer in units of kJ .

$052 \quad 10.0$ points

Calculate the standard reaction enthalpy for the reaction.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

given

$$
\begin{gathered}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\ell) \\
\Delta H^{\circ}=-128.3 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
2 \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH}(\ell) \\
\Delta H^{\circ}=-328.1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\Delta H^{\circ}=-483.6 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

1. $+155.5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
2. $+206.1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
3. $+216 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
4. $+412.1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
5. $+42.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

$053 \quad 10.0$ points

A system absorbs 237 J of heat while it performs 435 J of work. What is the change in the internal energy of the system?

1. 672 J
2. 198 J
3. -198 J
4. -672 J
$054 \quad 10.0$ points
Calculate the enthalpy change that occurs when 1.00 kg of acetone condenses at its boiling point (329.4 K). The standard enthalpy of vaporization of acetone is $29.1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.
5. -29.1 kJ
6. +29.1 kJ
7. +501 kJ
8. -501 kJ
9. $-2.91 \times 10^{4} \mathrm{~kJ}$

$055 \quad 10.0$ points

For which of the following reactions at room temperature $\left(25^{\circ} \mathrm{C}\right)$ would there be 5.0 kJ of work done on the system?

$$
\begin{aligned}
& \text { 1. } \mathrm{N}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \rightarrow \\
& \mathrm{CH}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \\
& \text { 2. } \mathrm{CH}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \\
& \mathrm{N}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
\end{aligned}
$$

3. $2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{2}(\ell)$
4. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
5. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\ell) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{O}_{2}(\mathrm{~g})$
6. $\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$

$056 \quad 10.0$ points

The value of ΔH for the reaction

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

is $-2220 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$. How much heat is given off when 33.0 g of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is burned at constant pressure?

1. 1665 kJ
2. 22420 kJ
3. 2220 kJ
4. 25.96 kJ
5. 555 kJ
6. 50.5 kJ
7. 6660 kJ

$057 \quad 10.0$ points

The two reactions shown below are both endothermic. For which reaction is $\Delta H<\Delta U$?
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

1. $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
2. Neither reaction has $\Delta H<\Delta U$.
3. Both reactions have $\Delta H<\Delta U$.
4. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$

$058 \quad 10.0$ points

Consider the following reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) .
$$

ΔH_{f} for $\mathrm{CO}_{2}(\mathrm{~g})$ is $-22.5 \mathrm{~kJ} / \mathrm{mol}$; ΔH_{f} for $\mathrm{CO}(\mathrm{g})$ is $-6.3 \mathrm{~kJ} / \mathrm{mol}$;
ΔH_{f} for $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is $-13.8 \mathrm{~kJ} / \mathrm{mol}$.

1. ΔH of the reaction is negative.
2. ΔH of the reaction is zero.
3. ΔH of the reaction is positive.
$059 \quad 10.0$ points
Consider the following specific heats: copper, $0.384 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; lead, $0.159 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; water, 4.18 $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; glass, $0.502 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. Which substance, once warmed, would be more likely to maintain its heat and keep you warm through a long football game on a cold night?
4. water
5. glass
6. copper

4. lead

$060 \quad 10.0$ points

A block of aluminum at $25^{\circ} \mathrm{C}$ and 1 atm is heated until it is a liquid at $700^{\circ} \mathrm{C}$. It is then cooled back down until it is back in the initial state of being a solid at $25^{\circ} \mathrm{C}$ and 1 atm . For this entire process (heating and cooling) ΔH is...

1. positive
2. less than ΔU
3. zero
4. greater than ΔU
5. negative
$061 \quad 10.0$ points
Which statement about internal energy is true?
6. The internal energy of a system is equal to w at constant volume.
7. The internal energy of a system is constant at constant volume.
8. The internal energy of a system is equal to w at constant pressure.
9. The internal energy of a system is equal
to q at constant volume.
10. The internal energy of a system is equal to q at constant pressure.
11. The internal energy of a system is constant at constant pressure.

$062 \quad 10.0$ points

When 0.100 g of graphite is burned completely in a bomb calorimeter (heat capacity $=3.344 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$), containing 3000 g of water, a temperature rise of $0.21^{\circ} \mathrm{C}$ is observed. What is ΔE for the combustion of graphite? The specific heat of liquid water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { 1. } \Delta E=+3.34 \mathrm{~kJ} / \mathrm{mol} \\
& \text { 2. } \Delta E=-40.1 \mathrm{~kJ} / \mathrm{mol} \\
& \text { 3. } \Delta E=-285 . \mathrm{kJ} / \mathrm{mol} \\
& \text { 4. } \Delta E=-3.34 \mathrm{~kJ} / \mathrm{mol} \\
& \text { 5. } \Delta E=-401.0 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

06310.0 points

When a given reaction was run at a constant pressure of 1 atm , the system absorbed 5 kJ of heat and the gases were consumed, causing the volume to decrease from 3.5 L to 1.5 L . What are ΔH and ΔU, respectively?

1. $+5 \mathrm{~kJ},+0.2 \mathrm{~kJ}$
2. $-5 \mathrm{~kJ},-4.8 \mathrm{~kJ}$
3. $+5 \mathrm{~kJ},+5.2 \mathrm{~kJ}$
4. $+5.2 \mathrm{~kJ},+5 \mathrm{~kJ}$
5. $+5 \mathrm{~kJ},+4.8 \mathrm{~kJ}$
6. $-4.8 \mathrm{~kJ},+0.2 \mathrm{~kJ}$
7. $-5 \mathrm{~kJ},-5.2 \mathrm{~kJ}$
8. $+5 \mathrm{~kJ},+5 \mathrm{~kJ}$
9. $-5 \mathrm{~kJ},-5 \mathrm{~kJ}$

$064 \quad 10.0$ points

Juan freezes a bottle of water to ice ($500 . \mathrm{mL}$) in preparation for a road trip. How much heat can be absorbed by that ice before it is fully melted?

1. 2090 kJ
2. 167 kJ
3. 0 kJ
4. 1130 kJ
5. 0.500 kJ
6. 1.50 kJ
7. 6.02 kJ

$065 \quad 10.0$ points

How much heat is absorbed in the complete reaction of 3.00 grams of SiO_{2} with excess carbon in the reaction below?

$$
\mathrm{SiO}_{2}(\mathrm{~g})+3 \mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{SiC}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{~g})
$$

ΔH for the reaction is $+624.7 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$.

1. 31.2 kJ
2. $1.33 \times 10^{4} \mathrm{~kJ}$
3. 5.06 kJ
4. 366 kJ
5. $1.13 \times 10^{5} \mathrm{~kJ}$

$066 \quad 10.0$ points

Using bond energies, estimate the enthalpy change for the reaction between hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ and carbon disulfide $\left(\mathrm{CS}_{2}\right)$ to produce carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and hydrogen disulfide $\left(\mathrm{H}_{2} \mathrm{~S}_{2}\right)$ according to the balanced equation:
$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{CS}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{~S}_{2}$

1. $-577 \mathrm{~kJ} / \mathrm{mol}$
2. $-106 \mathrm{~kJ} / \mathrm{mol}$
3. $292 \mathrm{~kJ} / \mathrm{mol}$
4. $106 \mathrm{~kJ} / \mathrm{mol}$
5. $-292 \mathrm{~kJ} / \mathrm{mol}$
6. $577 \mathrm{~kJ} / \mathrm{mol}$

$067 \quad 10.0$ points

The following reaction occurs during the production of metallic iron:

$$
\begin{aligned}
& 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\text { graphite }) \rightarrow \\
& 4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

Calculate ΔH for this reaction at $25^{\circ} \mathrm{C}$ and 1 atm .
ΔH_{f} for $\mathrm{CO}_{2}(\mathrm{~g})=-393.51 \mathrm{~kJ} / \mathrm{mol}$, and ΔH_{f} for $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})=-824.2 \mathrm{~kJ} / \mathrm{mol}$.

1. There is insufficient information to answer this question.
2. +467.9 kJ
3. -430.7 kJ
4. +430.7 kJ
5. -467.9 kJ

$068 \quad 10.0$ points

Based on thermodynamic table data calculate ΔH_{rxn} for

$$
2 \mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{SO}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

1. $560 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
2. $-560 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
3. $1120 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
4. $-1120 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

$069 \quad 10.0$ points

Calculate the standard reaction enthalpy for the reaction of calcite with hydrochloric acid

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\underset{\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})}{2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow}
$$

The standard enthalpies of formation are:
for $\mathrm{CaCl}_{2}(\mathrm{aq}):-877.1 \mathrm{~kJ} / \mathrm{mol}$;
for $\mathrm{H}_{2} \mathrm{O}(\ell):-285.83 \mathrm{~kJ} / \mathrm{mol}$;
for $\mathrm{CO}_{2}(\mathrm{~g}):-393.51 \mathrm{~kJ} / \mathrm{mol}$;
for $\mathrm{CaCO}_{3}(\mathrm{~s}):-1206.9 \mathrm{~kJ} / \mathrm{mol}$;
and for $\mathrm{HCl}(\mathrm{aq}):-167.16 \mathrm{~kJ} / \mathrm{mol}$.

1. $-38.2 \mathrm{~kJ} / \mathrm{mol}$
2. $-98.8 \mathrm{~kJ} / \mathrm{mol}$
3. $-116 \mathrm{~kJ} / \mathrm{mol}$
4. $-15.2 \mathrm{~kJ} / \mathrm{mol}$
5. $-72.7 \mathrm{~kJ} / \mathrm{mol}$
6. $-165 \mathrm{~kJ} / \mathrm{mol}$
7. $-215 \mathrm{~kJ} / \mathrm{mol}$

$070 \quad 10.0$ points

For an exothermic reaction, the sum of bond energies for the reactants are (greater/lesser) than those of the products.

1. lesser

2. greater

$071 \quad 10.0$ points

Calculate the standard reaction enthalpy for the reaction

$$
\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

given

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell) \\
\Delta H^{\circ}=-11.0 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
\mathrm{H}_{2} \mathrm{SO} 4(\ell) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \\
\Delta H^{\circ}=+78.5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
\mathrm{H}_{2} \mathrm{SO} 4(\ell) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\Delta H^{\circ}=+20.5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

1. +88.0 kJ
2. -69.0 kJ
3. +110.0 kJ
4. -47.0 kJ

$072 \quad 10.0$ points

When 17.8 g sodium is treated with excess oxygen, 160.2 kJ of heat is produced. What is the ΔH_{rxn} for the below reaction?

$$
4 \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})
$$

1. $-1682 \mathrm{~kJ} / \mathrm{mol}$
2. $-15.2 \mathrm{~kJ} / \mathrm{mol}$
3. $-152 \mathrm{~kJ} / \mathrm{mol}$
4. $-828 \mathrm{~kJ} / \mathrm{mol}$
5. $-168.2 \mathrm{~kJ} / \mathrm{mol}$
